Part Number Hot Search : 
D100N 1A194 D5V0S 99002E3 B5950 21PA1 DS2175N UESD56B
Product Description
Full Text Search
 

To Download R1223N332A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 12345
n OUTLINE
`99.12.8
PWM/VFM step-down DC/DC Converter
R1223N Series
The R1223N Series are PWM step-down DC/DC Converter controllers with low supply current by CMOS process. Each of these ICs consists of an oscillator, a PWM control circuit, a reference voltage unit, an error amplifier, a soft-start circuit, a protection circuit, a PWM/VFM alternative circuit, a chip enable circuit, and resistors for voltage detection. A low ripple, high efficiency step-down DC/DC converter can be easily composed of this IC with only four external components, or a power-transistor, an inductor, a diode and a capacitor. With a PWM/VFM alternative circuit, when the load current is small, the operation is automatically switching into the VFM oscillator from PWM oscillator, therefore the efficiency at small load current is improved. The R1223N XXXB type, which is without a PWM/VFM alternative circuit, is also available. If the term of maximum duty cycle keeps on a certain time, the embedded protection circuit works. There are two types of protection function. One is latch-type protection circuit, and it works to latch an external Power MOSFET with keeping it disable. To release the condition of protection, after disable this IC with a chip enable circuit, enable it again, or restart this IC with power-on. The other is Reset-type protection circuit, and it works to restart the operation with soft-start and repeat this operation until maximum duty cycle condition is released. Either of these protection circuits can be designated by users' request.
n FEATURES
l Range of Input Voltage * * * * * * * * * * * * *2.3V~13.2V l Built-in Soft-start Function and Two choices of Protection Function (Latch-type or Reset type) l Two choices of Oscillator Frequency * * * * * *300kHz, 500kHz l High Efficiency * * * * * * * * * * * * * * * * * *TYP. 90% l Output Voltage * * * * * * * * * * * * * * * * * Stepwise Setting with a step of 0.1V in the range of 1.5V ~ 5.0V l Standby Current * * * * * * * * * * * * * * * * *TYP. 0A l High Accuracy Output Voltage * * * * * * * * * *2.0% l Low Temperature-Drift Coefficient of Output Voltage * * * * * TYP. 100ppm/C
n APPLICATIONS
l Power source for hand-held communication equipment, cameras, video instruments such as VCRs, camcorders. l Power source for battery-powered equipment. l Power source for household electrical appliances.
12345
Rev. 1.11 -1-
n BLOCK DIAGRAM
VIN
OSC
VOUT
Vref
EXT
PWM/VFM CONTROL Protection Soft Start Chip Enable
CE
GND
n SELECTION GUIDE
In the R1223N Series, the output voltage, the oscillator frequency, the optional function, and the taping type for the ICs can be selected at the user's request. The selection can be made by designating the part number as shown below;
R1223NXXXX-XX
- -- a bc
Code a b c
d
Contents
d
Setting Output Voltage(VOUT): Stepwise setting with a step of 0.1V in the range of 1.5V to 5.0V is possible. Designation of Oscillator Frequency 2 : fixed Designation of Optional Function A : 300kHz, with a PWM/VFM alternative circuit, Latch-type protection B : 500 kHz, with a PWM/VFM alternative circuit, Latch-type protection C : 300kHz, without a PWM/VFM alternative circuit, Latch-type protection D : 500kHz, without a PWM/VFM alternative circuit, Latch-type protection E : 300kHz, with a PWM/VFM alternative circuit, Reset-type protection F : 500 kHz, with a PWM/VFM alternative circuit, Reset-type protection G : 300kHz, without a PWM/VFM alternative circuit, Reset-type protection H : 500kHz, without a PWM/VFM alternative circuit, Reset-type protection Designation of Taping Type; Ex. :TR,TL(refer to Taping Specification) "TR" is prescribed as a standard.
12345
Rev. 1.11 -2-
n PIN CONFIGURATION
l SOT-23-5
5
VIN
4
EXT
(mark side) CE GND VOUT
1
2
3
n PIN DESCRIPTION
Pin No. 1 2 3 4 5 Symbol CE GND VOUT EXT VIN Chip Enable Pin Ground Pin Pin for Monitoring Output Voltage External Transistor Drive Pin Power Supply Pin Description
n ABSOLUTE MAXIMUM RATINGS
Symbol VIN VEXT VCE VOUT IEXT PD Topt Tstg Item VIN Supply Voltage EXT Pin Output Voltage CE Pin Input Voltage VOUT Pin Input Voltage EXT Pin Inductor Drive Output Current Power Dissipation Operating Temperature Range Storage Temperature Range Rating 15 -0.3~VIN+0.3 -0.3~VIN+0.3 -0.3~VIN+0.3 25 250 -40~+85 -55~+125 Unit V V V V mA mW C C
12345
Rev. 1.11 -3-
n ELECTRICAL CHARACTERISTICS
lR1223N**2A(,C,E,G) Output Voltage : Vo Symbol VIN VOUT Item Operating Input Voltage Step-down Output Voltage VIN=VCE=Vo+1.2V,IOUT=-10mA Conditions MIN. 2.3 Vo 0.98 DVOUT/ DT fosc DfOSC/ DT IDD1 Istb IEXTH IEXTL ICEH ICEL VCEH VCEL Maxdty VFMdty Tstart Step-down Output Voltage Temperature Coefficient Oscillator Frequency Oscillator Frequency Temperature Coefficient Supply Current1 Standby Current EXT "H" Output Current EXT "L" Output Current CE "H" Input Current CE "L" Input Current CE "H" Input Voltage CE "L" Input Voltage Oscillator Maximum Duty Cycle VFM Duty Cycle
Delay Time by Soft-Start function
(Topt=25C) TYP. MAX. Unit 13.2 Vo Vo 1.02 100 ppm /C V V
-40C Topt 85C
VIN=VCE=Vo+1.2V,IOUT=-100mA -40C Topt 85C
240
300 0.3
360
kHz % /C
VIN=13.2V,VCE=13.2V,VOUT=13.2V VIN=13.2V,VCE=0V,VOUT=0V VIN=8V,VEXT=7.9V,VOUT=8V,VCE=8V VIN=8V,VEXT=0.1V,VOUT=0V,VCE=8V VIN=13.2V,VCE=13.2V,VOUT=13.2V VIN=13.2V,VCE=0V,VOUT=13.2V VIN=8V,VOUT=0V(R)1.5V VIN=8V,VOUT=1.5V(R)0V 0.3 100 only for A, E version VIN= Vo+1.2V, VCE=0V(R)Vo+1.2V specified at 80% for rising edge 5 -0.5 10
100 0 -10 20 0 0 0.8 0.8
160 0.5 -6
mA mA mA mA
0.5
mA mA
1.2
V V %
25 10 16
% ms
Tprot
Delay Time for protection circuit
VIN=VCE=Vo+1.2V VOUT= Vo+1.2V(R)0V
1
3
5
ms
12345
Rev. 1.11 -4-
lR1223N**2B(,D,F,H) Output Voltage : Vo Symbol VIN VOUT Item Operating Input Voltage Step-down Output Voltage VIN=VCE=Vo+1.2V,IOUT=-10mA Conditions MIN. 2.3 Vo 0.98 DVOUT/ DT fosc DfOSC/ DT IDD1 Istb IEXTH IEXTL ICEH ICEL VCEH VCEL Maxdty VFMdty Tstart Step-down Output Voltage Temperature Coefficient Oscillator Frequency Oscillator Frequency Temperature Coefficient Supply Current1 Standby Current EXT "H" Output Current EXT "L" Output Current CE "H" Input Current CE "L" Input Current CE "H" Input Voltage CE "L" Input Voltage Oscillator Maximum Duty Cycle VFM Duty Cycle
Delay Time by Soft-Start function
(Topt=25C) TYP. MAX. Unit 13.2 Vo Vo 1.02 100 ppm /C V V
-40C Topt 85C
VIN=VCE=Vo+1.2V,IOUT=-100mA -40C Topt 85C
400
500 0.3
600
kHz % /C
VIN=13.2V,VCE=13.2V,VOUT=13.2V VIN=13.2V,VCE=0V,VOUT=0V VIN=8V,VEXT=7.9V,VOUT=8V,VCE=8V VIN=8V,VEXT=0.1V,VOUT=0V,VCE=8V VIN=13.2V,VCE=13.2V,VOUT=13.2V VIN=13.2V,VCE=0V,VOUT=13.2V VIN=8V,VOUT=0V(R)1.5V VIN=8V,VOUT=1.5V(R)0V 0.3 100 only for B, F version VIN= Vo+1.2V, VCE=0V(R) Vo+1.2V specified at 80% for rising edge 3 -0.5 10
140 0 -10 20 0 0 0.8 0.8
200 0.5 -6
mA mA mA mA
0.5
mA mA
1.2
V V %
25 6 10
% ms
Tprot
Delay Time for protection circuit
VIN=VCE=Vo+1.2V VOUT= Vo+1.2V(R)0V
1
2
4
ms
12345
Rev. 1.11 -5-
n TEST CIRCUITS
A)
PMOS
L
E)
5 4 3
5
4
3
V
VIN
1 2
SD CIN
VIN
A 1 2
CL
F) B)
A 5 4 3 OSCILLOSCOPE PMOS
L
5
4
3
V
VIN VIN
1 2
CIN
1 2
SD
CL
CIN
OSCILLOSCOPE
C)
A 5 4 3
G)
OSCILLOSCOPE 5 4 3
VIN
1 2
VIN
1 2
VOUT
D)
5 4
A
VEXT
3
VIN VOUT
1 2
The typical characteristics were obtained by use of these test circuits.
Test Circuit A : Typical characteristics 1), 2), 3), 4), 5), 6), 7) Test Circuit B : Typical characteristics 8) Test Circuit C : Standby Current Test Circuit D : Typical characteristics 12), 13) Test Circuit E : CE input current "H" and "L" Test Circuit F : Typical characteristics 9) Test Circuit G : Typical characteristics 10), 11)
12345
Rev. 1.11 -6-
n TYPICAL APPLICATIONS AND APPLICATION HINTS
PMOS L VIN CE CIN GND EXT VOUT SD1 COUT Load
CE CONTROL
PMOS : HAT1020R(Hitachi), Si3443DV(Siliconix) SD1 CIN : RB491D (Rohm) : 10mF52(Tantalum Type)
L
: CD105(Sumida, 27mH)
COUT : 47mF(Tantalum Type)
When you use these ICs, consider the following issues; l As shown in the block diagram, a parasitic diode is formed in each terminal, each of these diodes is not formed for load current, therefore do not use it in such a way. When you control the CE pin by another power supply, do not make its "H" level more than the voltage level of VIN pin. l The operation of Latch-type protection circuit is as follows; When the maximum duty cycle continues longer than the delay time for protection circuit, (Refer to the Electrical Characteristics) the protection circuit works to shut-down Power MOSFET with its latching operation. Therefore when an input/output voltage difference is small, the protection circuit may work with small load current. To release the protection latch state, after disable this IC with a chip enable circuit, enable it again, or restart this IC with power-on. However, in the case of restarting this IC with power-on, after the power supply is turned off, if a certain amount of charge remains in CIN, or some voltage is forced to VIN from CIN, this IC might not be restarted even after power-on. If rising transition speed of supply voltage is too slow, or the time which is required for VIN voltage to reach Output voltage of DC/DC converter is longer than soft-starting time plus delay time for protection circuit, protection circuit works before VIN voltage reaches Output voltage of DC/DC converter. To prevent this action, while power supply voltage is not ready, make this IC be standby mode(CE="L"), and when the power supply is ready (the voltage level of VIN is equal or more than the voltage level of VOUT), make it enable(CE="H"). l The operation of Reset-type protection circuit is as follows; When the maximum duty cycle continues longer than the delay time for protection circuit, (Refer to the Electrical Characteristics) the protection circuit works to restart with soft-start operation. Therefore when an input/output voltage difference is small, the protection circuit may work with small load current. l Set external components as close as possible to the IC and minimize the connection between the components and the IC. In particular, a capacitor should be connected to VOUT pin with the minimum connection. And make sufficient grounding and reinforce supplying. A large switching current flows through the connection of power supply, an inductor and the connection of VOUT. If the impedance of the connection of power supply is high, the voltage level of power supply of the IC fluctuates with the switching current. This may cause unstable operation of the IC. l Use capacitors with a capacity of 22mF or more for VOUT pin, and with good high frequency characteristics such as tantalum capacitors. We recommend you to use capacitors with an allowable voltage which is at least twice as much as setting output voltage. This is because there may be a case where a spike-shaped high voltage is generated by an inductor when an external transistor is on and off. l Choose an inductor that has sufficiently small D.C. resistance and large allowable current and is hard to reach magnetic saturation. And if the value of inductance of an inductor is extremely small, the ILX may exceed the absolute maximum rating at the maximum loading.
12345
Rev. 1.11 -7-
Use an inductor with appropriate inductance. l Use a diode of a Schottky type with high switching speed, and also pay attention to its current capacity. l Do not use this IC under the condition at VIN voltage less than minimum operating voltage. P The performance of power source circuits using these ICs extremely depends upon the peripheral circuits. Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their respected rated values.
n OPERATION of step-down DC/DC converter and Output Current
The step-down DC/DC converter charges energy in the inductor when Lx transistor is ON, and discharges the energy from the inductor when Lx transistor is OFF and controls with less energy loss, so that a lower output voltage than the input voltage is obtained. The operation will be explained with reference to the following diagrams : i1 IOUT L VIN Lx Tr SD i2 CL ton T=1/fosc Step 1 : LxTr turns on and current IL(=i1) flows, and energy is charged into CL. At this moment, IL increases from ILmin(=0) to reach ILmax in proportion to the on-time period(ton) of LXTr. Step 2 : When LxTr turns off, Schottky diode(SD) turns on in order that L maintains IL at ILmax, and current IL(=i2) flows. Step 3 : IL decreases gradually and reaches ILmin after a time period of topen, and SD turns off, provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff time is not enough. In this case, IL value is from this ILmin(>0). In the case of PWM control system, the output voltage is maintained by controlling the on-time period(ton), with the oscillator frequency(fosc) being maintained constant. l Discontinuous Conduction Mode and Continuous Conduction Mode The maximum value(ILmax) and the minimum value(ILmin) of the current which flows through the inductor are the same as those when LxTr is ON and when it is OFF. The difference between ILmax and ILmin, which is represented by DI ; DI = ILmax - ILmin = VOUT topen / L = (VIN-VOUT)ton/LxxxEquation 1 wherein T=1/fosc=ton+toff duty(%)=ton/T100=tonfosc100 topen toff In Equation 1, VOUTtopen/L and (VIN-VOUT)ton/L are respectively show the change of the current at ON, and the change of the current at OFF. When the output current(IOUT) is relatively small, topen0). The former mode is referred to as the discontinuous mode and the latter mode is referred to as continuous mode. In the continuous mode, when Equation 1 is solved for ton and assumed that the solution is tonc, toff VOUT ILmin topen ILmax
12345
Rev. 1.11 -8-
tonc=TVIN/VOUTxxx Equation 2 When tonn OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS
When LxTr is ON: (Wherein, Ripple Current P-P value is described as IRP, ON resistance of LXTr is described as Rp the direct current of the inductor is described as RL.) VIN=VOUT+(Rp+RL)IOUT+LIRP/ton When LxTr is OFF: LIRP/toff = VF+VOUT+RLIOUT xxxEquation 3 xxxEquation 4
Put Equation 4 to Equation 3 and solve for ON duty, ton/(toff+ton)=DON, DON=(VOUT+VF+RLIOUT)/(VIN+VF-RpIOUT)xxxEquation 5 Ripple Current is as follows; IRP=(VIN-VOUT-RpIOUT-RLIOUT)DON/f/L 1/4Equation 6 wherein, peak current that flows through L, LxTr, and SD is as follows; ILmax=IOUT+IRP/2 1/4Equation 7
Consider ILmax, condition of input and output and select external components. HThe above explanation is directed to the calculation in an ideal case in continuous mode.
n External Components
1. Inductor Select an inductor that peak current does not exceed ILmax. If larger current than allowable current flows, magnetic saturation occurs and make transform efficiency worse. When the load current is same, the smaller value of L, the larger the ripple current. Provided that the allowable current is large in that case and DC current is small, therefore, for large output current, efficiency is better than using an inductor with a large value of L and vice versa. 2. Diode Use a diode with low VF (Schottky type is recommended.) and high switching speed. Reverse voltage rating should be more than VIN and current rating should be equal or more than ILmax. 3. Capacitor As for CIN, use a capacitor with low ESR(Equivalent Series Resistance) and a capacity of at least 10mF for stable operation. COUT can reduce ripple of Output Voltage, therefore 47 to 100mF tantalum type is recommended. 4. Lx Transistor Pch Power MOS FET is required for this IC. Its breakdown voltage between gate and source should be a few volt higher than Input Voltage. In the case of Input Voltage is low, to turn on MOS FET completely, select a MOS FET with low threshold voltage. If a large load current is necessary for your application and important, choose a MOS FET with low ON resistance for good efficiency. If a small load current is mainly necessary for your application, choose a MOS FET with low gate capacity for good efficiency. Maximum continuous drain current of MOS FET should be larger than peak current, ILmax.
12345
Rev. 1.11 -9-
n TYPICAL CHARACTERISTICS
1) Output Voltage vs. Output Current
R1223N332H 3.400 3.380 3.360 3.340 3.320 3.300 3.280 3.260 3.240 3.220 3.200 1E-05 0.0001 0.001 0.01
L=27uH
R1223N152H 1.530
L=27uH
Output Voltage VOUT(V)
12V 8V 4.5V
Output Voltage VOUT(V)
1.520 1.510 1.500
13.2V
1.490 1.480
8V 5V 2.3V
0.1
1
1.470 1E-05 0.0001 0.001
0.01
0.1
1
Output Current IOUT(A)
Output Current IOUT(A)
2) Efficiency vs. Output Current R1223N332A(VIN=4.5V) Si3443DV 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 100 1000
Output Current IOUT(mA)
CD104-27uH
CD104-27uH
R1223N332A(VIN=12V) Si3443DV 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 100
CD104-27uH
Efficiency(%)
Efficiency (%)
1000
Output Current IOUT(mA)
R1223N332B(VIN=4.5V)Si3443DV
R1223N332B(VIN=12V) Si3443DV
CD104-27uH
100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 100 1000
Output Current IOUT(mA)
100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 100 1000
Output Current IOUT(mA)
Efficiency(%)
12345
Rev. 1.11 - 10 -
Efficiency(%)
R1223N332C(VIN=4.5V)Si3443DV 100 90 80
Efficiency(%)
CD104-27uH
R1223N332C(VIN=12V) Si3443DV 100 90 80
Efficiency(%)
CD104-27uH
70 60 50 40 30 20 10 0 0.1 1 10 100 1000
Output Current IOUT(mA)
70 60 50 40 30 20 10 0 0.1 1 10 100 1000
Output Current IOUT(mA)
R1223N502A(VIN=6.0V)CD104-27uH 100 90 80 70
Efficiency(%) Si3443DV
R1223N502A(VIN=12V)
CD104-27uH Si3443DV
60 50 40 30 20 10 0 0.1 1 10 100 1000
Output Current IOUT(mA)
100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 100 1000
Output Current IOUT(mA)
Efficiency(%)
R1223N502B(VIN=6.0V)CD104-27uH 100 90 80
Efficiency(%) Si3443DV
R1223N502B(VIN=12V) CD104-27uH
Si3443DV
60 50 40 30 20 10 0
Efficiency(%)
70
100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 100 1000
Output Current IOUT(mA)
0.1
Output Current IOUT(mA)
1
10
100
1000
12345
Rev. 1.11 - 11 -
R1223N502C(VIN=6.0V) Si3443DV 100 90 80 70
Efficiency(%)
CD104-27uH
R1223N502C(VIN=12V) Si3443DV
CD104-27uH
60 50 40 30 20 10 0 0.1 1 10 100 1000
Output Current IOUT(mA)
100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 100 1000
Output Current IOUT(mA)
3) Ripple Voltage vs. Output Current
Efficiency(%)
R1223N332A 200 180 160 140 120 100 80 60 40 20 0 1 10
VIN4.5V VIN8V VIN12V
L=27uH
R1223N502A 200
Ripple Voltage Vrpp(mV)
L=27uH
Ripple Voltage Vrpp(mV)
180 160 140 120 100 80 60 40 20 0 1 10
VIN6V VIN8V VIN12V
100
1000
100
1000
Output Current IOUT(mA)
Output Current IOUT(mA) L=27uH
R1223N332B 200 180
Ripple Voltage Vrpp(mV)
R1223N502B 200 180 160 140 120 100 80 60 40 20 0 1 10
L=27uH
140 120 100 80 60 40 20 0 1 10
100
1000
Ripple Voltage Vrpp(mV)
160
VIN4.5V VIN8V VIN12V
VIN6V VIN8V VIN12V
100
1000
Output Current IOUT(mA)
Output Current IOUT(mA)
12345
Rev. 1.11 - 12 -
R1223N332C 200 180
Ripple Voltage Vrpp(mV)
L=27uH
R1223N502C 200
L=27uH
160 140 120 100 80 60 40 20 0 1 10
VIN4.5V VIN12V Ripple Voltage Vrpp(mV) VIN8V
180 160 140 120 100 80 60 40 20
VIN6V VIN8V VIN12V
100
1000
0 1 10 100 1000
Output Current IOUT(mA)
Output Current IOUT(mA)
4) Oscillator Frequency vs. Input Voltage R1223N152B 600
Oscillator Frequency fosc(kHz) L=27uH
R1223N152A 600
Oscillator Frequency fosc(kHz)
L=27uH
500 400 300 200 100 0 0 5 10 15
Input Voltage VIN(V)
500 400 300 200 100 0 0 5 10 15
Input Voltage VIN(V)
5) Output Voltage vs. Input Voltage R1223N152B 1.53
Output Voltage Vout(V) Output Voltage Vout(V) L=27uH
R1223N152A 1.53 1.52 1.51 1.50 1.49 1.48 1.47
L=27uH
1.52 1.51 1.50 1.49 1.48 1.47 0 5 10 15
Input Voltage VIN(V)
0
5
10
15
Input Voltage VIN(V)
12345
Rev. 1.11 - 13 -
R1223N332B 3.36
Output Voltage Vout(V)
L=27uH
R1223N332A 3.36
Output Voltage Vout(V)
L=27uH
3.34 3.32 3.30 3.28 3.26 3.24 0 5 10 15
Input Voltage VIN(V)
3.34 3.32 3.30 3.28 3.26 3.24 0 5 10 15
Input Voltage VIN(V)
6) Output Voltage vs. Temperature
R1223N332H 3.33
Output Voltage VOUT(V)
L=27uH VIN=4.5V
R1223N152B 1.51
Output Voltage VOUT(V)
L=27uH VIN=2.7V
3.32 3.31 3.30 3.29 3.28 3.27 -50 0 50 100
Temperature Topt (C)
1.50
1.49
1.48
1.47 -50 0 50 100
Temperature Topt (C)
7) Oscillator Frequency vs. Temperature
R1223N252A 360
Oscillator Frequency fosc(kHz)
L=27uH VIN=3.7V
R1223N332B 600
Oscillator Frequency fosc(kHz)
L=27uH VIN=4.5V
340 320 300 280 260 240 -50 0 50 100
Temperature Topt
550
500
450
400 -50 0 50 100
Temperature Topt
12345
Rev. 1.11 - 14 -
8) Supply Current vs. Temperature
R1223N332G 100
Supply Current1(uA) Supply Current1(uA)
R1223N332H 140 130
90 80 70 60 50 -50 0 50 100
Temperature Topt (C) VIN15V VIN13.2V VIN8V
120 110 100 90 80 70 60 -50 0 50 100
Temperature Topt (C) VIN15V VIN13.2V VIN8V
9) Soft-start time vs. Temperature
R1223N252A 16 14
Soft-start Time (msec)
L=27uH VIN=3.7V
R1223N332B 10
Soft-start Time(msec)
L=27uH VIN=4.5V
8 6 4 2 0
12 10 8 6 4 2 0 -50 0 50 100
Temperature Topt (C)
-50
0
50
100
Temperature Topt (C)
10) Delay Time for Latch-type protection vs. Temperature
R1223N252A 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -50 0 50
Delay Time for Latch-type Protection(msec)
VIN=3.7V
R1223N332B VIN=4.5 4.0
Delay Time for Latch-type Protection(msec)
3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -50 0 50 100
100
Temperature Topt (C)
Temperature Topt (C)
12345
Rev. 1.11 - 15 -
11) Delay Time for Reset-type Protection vs. Temperature
R1223N332G 5
Delay Time for Reset-type Protection(msec)
VIN=4.5V
R1223N332H 5
Delay Time for Reset-type Protection(msec)
VIN=4.5V
4 3 2 1 0 -50 0 50 100
Temperature Topt (C)
4 3 2 1 0 -50 0 50 100
Temperature Topt (C)
12) EXT "H" Output Current vs. Temperature
R1223N332B 16
EXT"H" Output Current(mA)
14 12 10 8 6 4 2 0 -50 50 Temperature Topt (C) 0 100
13) EXT"L" Output Current vs. Temperature
R1223N332B 30
EXT"L" Output Current(mA)
25 20 15 10 5 0 -50 0 50 100
Temperature Topt (C)
12345
Rev. 1.11 - 16 -
14) Load Transient Response
R1223N332A 3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 2.5 2.4 0
VIN=5V L=27uH
R1223N332A 3.6 3.5 3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 0 0.05
Time (sec)
VIN=5V L=27uH
Ourput Voltage VOUT(V)
500
Output Current IOUT(mA)
Output Voltage VOUT(V)
500
Output Current IOUT(mA)
0. 1 0.0002 0.0004 0.0006 0.0008 0.001
Time (sec)
0.1 0.1
R1223N332B 3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 2.5 2.4 0
VIN=5V L=27uH
R1223N332B 3.6 3.5
Output Voltage VOUT(V)
VIN=5V L=27uH
Output Voltage VOUT(V)
3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 0 0.05
Time (sec)
50 0
50
Output Current IOUT(mA)
0. 1 0.0002 0.0004 0.0006 0.0008 0.001
Time (sec) VIN=5V L=27uH
Output Current IOUT(mA)
0.
0.1
R1223N332C 3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 2.5 2.4 0
R1223N332C 3.6 Output Voltage VOUT(V) 3.5 3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 0.1 2.6 0 0.05 Time (sec)
VIN=5V L=27uH
Output Voltage VOUT(V)
500
Output Current IOUT(mA)
500
Output Current IOUT(mA)
0.1
0.0002 0.0004 0.0006 0.0008 0.001 Time (sec)
0.1
12345
Rev. 1.11 - 17 -
R1223N332D 3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 2.5 2.4 0
VIN=5V L=27uH
R1223N332D 3.6 3.5 3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 0 0.05 Time (sec)
VIN=5V L=27uH
Output Voltage VOUT(V)
Output Voltage VOUT(V)
500
Output Current IOUT(mA)
500
Output Current IOUT(mA)
0.1 0.0002 0.0004 0.0006 0.0008 0.001 Time (sec)
0.1 0.1
15) Turn-on Waveform
R1223N332A(VIN=10V,IOUT=0mA)
L=27uH
R1223N332A(VIN=5V,IOUT=0mA)
L=27uH
3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -0.01 0 0.01 Time (sec)
10
0 0.02
3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -0.01 0 0.01 Time (sec)
Output Voltage VOUT(V)
Output Voltage VOUT(V)
R1223N332B(VIN=10V,IOUT=0mA)
L=27uH
CE Voltage(V)
R1223N332B(VIN=5V,IOUT=0mA)
L=27uH
CE Voltage(V)
0 0.02
3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -0.01 0 0.01 Time (sec)
1 0
0 0.02
3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -0.01 0 0.01 Time (sec)
Output Voltage VOUT(V)
Output Voltage VOUT(V)
5
CE Voltage(V)
CE Voltage(V)
0 0.02
12345
Rev. 1.11 - 18 -
R1223N332A(VIN=10V,IOUT=100mA)
L=27uH
R1223N332A(VIN=5V,IOUT=100mA) 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -0.01 0 0.01 Time (sec)
L=27uH
3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -0.01 0 0.01 Time (sec)
Output Voltage VOUT(V)
Output Voltage VOUT(V)
10
5
CE Voltage(V)
R1223N332B(VIN=10V,IOUT=100mA)
L=27uH
CE Voltage(V)
0 0.02
0 0.02
R1223N332B(VIN=5V,IOUT=100mA)
L=27uH
3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -0.01 0 0.01 Time (sec)
10
CE Voltage(V)
0 0.02
3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -0.01 0 0.01 Time (sec)
Output Voltage VOUT(V)
Output Voltage VOUT(V)
5
CE Voltage(V)
0 0.02
12345
Rev. 1.11 - 19 -


▲Up To Search▲   

 
Price & Availability of R1223N332A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X